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Cascading hazards of a major Bengal basin
earthquake and abrupt avulsion of the
Ganges River

ElizabethL.Chamberlain 1,2,3 , StevenL.Goodbred 2 ,MichaelS. Steckler3,
Jakob Wallinga 1, Tony Reimann4, Syed Humayun Akhter5,6, Rachel Bain2,
Golam Muktadir 7, Abdullah Al Nahian5, F. M. Arifur Rahman5,
Mahfuzur Rahman5,8, Leonardo Seeber3 & Christoph von Hagke9

Earthquakes present severe hazards for people and economies and can be
primary drivers of landscape change yet their impact to river-channel net-
works remains poorly known. Here we show evidence for an abrupt
earthquake-triggered avulsion of the Ganges River at ~2.5 ka leading to relo-
cation of the mainstem channel belt in the Bengal delta. This is recorded in
freshly discovered sedimentary archives of an immense relict channel and a
paleo-earthquake of sufficient magnitude to cause major liquefaction and
generate large, decimeter-scale sand dikes >180 km from the nearest seismo-
genic source region. Precise luminescence ages of channel sand, channel fill,
and breached and partially liquefied floodplain deposits support coeval timing
of the avulsion and earthquake. Evidence for reorganization of the river-
channel network in theworld’s largest delta broadens the risk posedby seismic
events in the region and their recognition as geomorphic agents in this and
other tectonically active lowlands. The recurrence of comparable earthquake-
triggered ground liquefaction and a channel avulsion would be catastrophic
for any of the heavily populated, large river basins and deltas along the
Himalayan arc (e.g., Indus, Ganges, Brahmaputra, Ayeyarwady). The com-
pounding effects of climate change and human impacts heighten and extend
the vulnerability of many lowlands worldwide to such cascading hazards.

Avulsion is a fundamental delta-building process that sustains coastal
landscapes by redistributing the focus of sediment deposition over
time to offset basin subsidence, sea-level rise, and localized aggrada-
tion of channel belts. The processes that govern avulsion remain
debated1–4, and the dominantmechanismsmayvarybetween relatively
high-gradient, coarse-sediment fan settings and relatively low-

gradient, fine-grain coastal settings as well by climate and sediment
supply5. In its simplest form, avulsion results when channel belts
become superelevated relative to their floodplain and shift to a new
course through gradual abandonment by stream capture6,7. This
mechanism is largely supported by autogenic river processes, but
allogenic forces such as tectonic deformation or earthquakes may
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contribute to the avulsion of rivers in seismically active basins8,9. In
regions such as the Himalaya, ongoing collision, uplift, and erosion
have produced thick sedimentary sequences in both foreland and
continental-margin basins that lie adjacent to the active seismogenic
zones10. Among the largest andmost heavily populated of these basins
are the major rivers valleys and their coastal delta systems, including
the Indus, Ganges, Brahmaputra, and Ayeyarwady.

The seismic risk to such lowlands is broadly recognized11–16 but
remains poorly constrained with respect to response magnitude and
cascading hazards17. In part, the large size of these basins means that
they often extend >100 km from the nearest faults and may only be
impacted by larger, less frequent events for which there are scant
historical records. Instrumental and historical timescales of years to
centuries are likely tomiss large, rare eventswithmillennial recurrence
intervals18. For example, a recent satellite-based synthesis of channel
avulsions found no statistical correlation with earthquakes occurring
in that instrumental timescale5. However, millennial-timescale recon-
structions suggest evidence of earthquake impacts on inland river
channel geometries in the NewMadrid seismic zone, USA19,20, a region
which corresponds to channel-belt avulsion sites of the Mississippi
River over the Holocene21,22. Similarly, earthquakes in India’s Rann of
Kutch region have caused widespread liquefaction and flooding from
fault-induced water diversions16,23–25. Paleoenvironmental reconstruc-
tions alongside archaeological sources indicate thismay be a recurring
event16,26. The displacement of river channels proximal to ruptured
faults is previously recognized9 yet the impact of seismicity on more
distal lowland channels is not known or well documented. Although
often far from seismogenic sources, the potential for earthquake
impacts to lowland river-channel networks is amplified by the pro-
pensity of mud-capped, saturated fine-medium sands to liquefy, the
greater relative effect of land-surface deformation and water routing
on low-gradient landscapes, and fracture or failure of riverbank levees
through lateral spreading27,28.

As a vivid and empirical example of seismic risk to lowland basins,
we present evidence from the sedimentary archive of the Bengal basin
(Fig. 1) showing abrupt and complete avulsion of themainstemGanges
River coincident with a major paleo-earthquake. The river-channel
avulsion is evidenced by the cessation of sand transport and overbank
mud deposition at ~2.5 ka along an 85-km reach of this Ganges paleo-
channel belt. Located within 1-km of the abandoned channel are large

(30–40-cm wide) sand dikes which breach the entire ~2.6–2.5 ka
floodplain sequence. Such an archive is previously undocumented in
the Bengal basin. The characteristics of the sand dikes, including their
orientation, fracture bifurcations, brecciated sediment clasts, and
liquefied sedimentary structures, all rule out a non-seismic origin and
indicate that thedikeswere formedby sediment liquefactionduring an
earthquake. A suite of thirteen precise optically stimulated lumines-
cence (OSL) ages obtained from quartz silt29 constrain the apparent
coeval occurrence of the avulsion and seismic events. These findings
support a largely unrecognized allogenic avulsion mechanism and
highlight the elevated risk of cascading earthquake hazards in river
deltas and other lowland basin settings.

Results
Paleochannel archive
The 150,000 km2 Bengal basin is part of the trailing-edge continental
margin of the eastern Indian subcontinent. Its northern and eastern
perimeters lie at convergent plate boundaries that actively deform the
kilometers of Neogene and older fluvio-deltaic sediments that infill the
basin30. The Holocene delta sequence is up to 90m thick and its
sediments are primarily supplied by two of Earth’s largest rivers – the
Ganges and Brahmaputra31.

In the central delta plain, ~45 km south of the modern Ganges
River, the scar of a 1.0–1.7 km-wide meandering paleochannel is evi-
dent in the delta’s surface morphology (Fig. 1a, b). The relative eleva-
tion of the present-day paleochannel surface is ~3m below the
adjacent levee and floodplain surfaces; the paleochannel is conse-
quently poorly drained and used for rice cultivation (Fig. 2). The wide
paleochannel is partially infilled with muds that are 3–15m thick and
abruptly overlie a well-preserved sandy channel bed. This sand surface
defines the meandering paleochannel’s point-bar front and thalweg
(Fig. 2a). OSL ages of the upper point-bar and channel-fill sands both
place the last occurrence of active sand transport at 2.61 ± 0.11 ka with
an abrupt transition to mud infilling at 2.48± 0.14 ka (Fig. 2a). Ages
from the adjacent floodplain show coeval, rapid overbank aggradation
producing a ~ 4m-thick sequence dating from 2.63 ± 0.15 ka at its base
to 2.49 ±0.10 ka near the modern land surface (Fig. 3a). Combined
with the paleochannel results, these data indicate that a large,
aggrading river system was active here around 2.6 ka, and the cessa-
tion of sand transport and overbank deposition indicate abrupt

Fig. 1 | Abandoned channel scar and seismite locations within the fluvial and
tectonic setting of the Bengal basin. a The central Bengal basin is shaped by the
GangesRiver, the Indo-Burmanmegathrust deformation front and foldbelt growth,
and the Shillong Massif thrust and uplift, among its fluvial and tectonic agents.
b Coring and luminescence sampling was executed across a vast, underfilled
paleochannel evident on theGangesfloodplain surface and at an adjacent dry pond

with seismite features. cTheperimeter of thedrainedpond at the timeoffieldwork.
The pond walls and floor revealed extensive sand dikes, fluidized muds, and
liquefied sand layers, which were sampled for luminescence dating. The back-
ground images for panels a and b show relative surface topography from NASA
SRTM elevation data.
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channel abandonment around 2.5 ka. Prior to abandonment, the
average overbank sedimentation rate was a rapid 1.9 ± 0.8 cm/yr,
which is consistent with rates from other proximal floodplain settings
in the delta32,33. The abrupt andwidespread cessation of sand transport
along the entire paleochannel belt is supported by a coeval age of
2.62 ± 0.16 ka for the shallow-buried sands of a preserved mid-channel
bar top ~85 km downstream (Fig. S3). These shallow, con-
temporaneously deposited bar-top units lie along a low-elevation
swath (Fig. 1a, S3) indicating the continuous absence of fluvial clastic
deposition since the river course was abandoned at ~2.5 ka.

The sands at these upstream (MA IV-1, MA IV-2, MA V-1) and
downstream (RD III-1 and RD III-2) locations consistently yield bulk-
strontium values ranging 83 ± 3 to 98 ± 3 ppm, which unambiguously
fall within the range for Ganges River provenance for the central and
western delta34 (Supplementary Methods 3. Geochemical and grain-
size measurements). Furthermore, the scale of the paleochannel indi-
cates that it represents themainstem pathway of the Ganges River and
was not a distributary. The paleochannel is 1.0–1.7 km wide with a
cross-sectional area of ~17.7 × 103m2 based on the depth to sand from
our borehole transect (Fig. 2). This cross-sectional area is within 5% of
the ~16.7 × 103m2 value for the modern Ganges channel at Hardinge
Bridge, where the river is 1.5 km wide (Fig. 2c)35. In contrast, modern
distributary channels of the Ganges River, including the Gorai and
Bhagirath-Hooghly distributaries, are only 0.2–0.5 km wide in most
places and rarely exceed 0.6 km. These distributary channels have

cross-sectional areas of 1–2 × 103m2, which are only ~10% that of the
modern mainstem river and the abandoned paleochannel (Fig. 2c).

Sand-dike archive
One kilometer east of the abandoned channel (Fig. 1), two large, linear
sand dikes and their subordinate fractures rupture the thick, muddy
floodplain sequence and reflect major liquefaction of underlying sand
units (Figs. 1, 3). Terrestrial clastic dikes such as these are commonly
associated with earthquakes, wherein intensive shaking can fluidize
buried saturated sediments and generate sufficient pore-fluidpressure
to drive injection of confined sediments into overlying deposits.
Modern and ancient examples of earthquake-triggered liquefaction
and sand-dike emplacement can be found worldwide28,36–39. Clastic
dikes may also form through non-seismic mechanisms such as riv-
erbank slumping, load-induced pressurization, and wind events40,41.
The dikes we identified consist of moderately well-sorted, fine sands
(d50= 200–250 µm) that breach a nearly 4-m thick capping unit of
moderately sorted silty muds (d50= 35–60 µm). Both units are typical
of river-channel sands and floodplain deposits in the central Bengal
delta, respectively42. The size and sorting distribution of the sands fall
squarely within the ideal range for liquefaction41,43,44, as domost of the
shallow (<30m depth) sands across the lower Bengal delta (Fig. 4) and
elsewhere in Bangladesh45.

The twomain dikes are ~15m apart and lie parallel to one another
at a roughly east-west strike (Figs. 1c, 3). The dikes are both 10–15 cm

Fig. 2 | Stratigraphy and chronology of the abandoned paleochannel. a Hand
and tube-well coring of the paleochannel revealed a typical meandering-channel
bed profile with a thalweg depth of ~20m below the surface. The channel was only
partially infilled with fine muds, atypical for abandoned channels of the mainstem
Ganges River. Channel-sand ages yield a weighted mean of 2.61 ± 0.11 ka, and the
infillingmuds luminescencedated to 2.48 ±0.14 ka.bView from the pointbar of the
paleochannel, looking across to the outer bank, shows the scale of the feature.

c Comparison of cross-sectional areas of the modern mainstem Ganges River at
Hardinge Bridge, the modern Gorai distributary (a secondary offtake), and this
paleochannel supports interpretation of this feature as a former mainstem Ganges
channel. Note that the different morphology for the modern and paleo cross-
sectional profiles simply reflect their differing locations along straight and mean-
dering channel reaches, respectively.
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Fig. 3 | Lithostratigraphy and chronology of sand dikes. a Depiction of shallow
lithostratigraphy, features, and location and results of OSL dating of sand dike
features and intruded sediment. The OSL ages are stratigraphically consistent and
constrainoverbankdeposition to ~2.6–2.5 ka, contemporaneouswith the activity of

the adjacent river channel (Fig. 2a). b Deep lithostratigraphy obtained from tube-
well drilling shows a mud-confined sand at ~0–20m elevation overlying
Pleistocene-aged sands. c, d ~20–40 cm-wide sand dikes bisect the floodplain cap
exposed along the pond walls.

Fig. 4 | Sediment texture and liquefaction potential. Grain-size distribution plot
showing the shallow sands from borehole BNG-MS3 at the study site (Figs. 1, 3) and
the average upper 30-m of Holocene sands and muds of the lower Bengal delta42.

The range of grain-size distributions susceptible to liquefaction41,43,44 indicate that
sands at the study site and across the lower Bengal basin are highly liquefiable.
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wide at their base and widen to 30–40 cm in the upper few meters
before reachingground level (Fig. 3). In this upper zone, themaindikes
yield a number of subordinate dikes (5–10 cmwide) that often conjoin
one another to form a connected network of structures.

The margins of the sand-dike intrusions are sharply bound and
quasi-linear with some angular edges and fractures. Brecciated mud
clasts (1–15 cm) are regularly incorporated within the dike sands, but
they are most common at bifurcation points of the subordinate dikes
(Fig. S1c),where the clasts appear to disruptflowof thefluidized sands.
This arrangement suggests that the subordinate dikes formed in suc-
cession after the main dikes and may reflect minutes of sustained
ground-surface deformation during emplacement. The large dikes
reported here comprise unconsolidated Holocene sands that intruded
actively aggrading overbank muds.

Together, the large width (5–40 cm) and complex structure (e.g.,
bifurcating and intersecting fractures, brecciated clasts) of these
Ganges sand dikes suggests sustained, high-energy disturbance that is
consistent with a seismic origin. Fracturing and sand injection due to
riverbank slumping can be ruled out because of the dikes’ orientation
normal to the paleochannel (Fig. 1b, c); in contrast, bank extension
would cause tensile fractures roughly parallel to the channel39. The

timing of sand dike emplacement is well constrained by OSL ages of
the capping floodplain muds breached by the dikes. This floodplain
deposit yields burial ages of 2.63 ± 0.15 ka for muds near its base at
3.5m depth, as well as an age of 2.58 ± 0.15 ka for the silt-to-very-fine-
sand layer at ~1.0m depth and 2.49 ± 0.10 ka for muds ~0.8m below
the present-day ground surface (Fig. 3a).

When viewed in cross-section, the scale and architecture of the
dikes are similar to those associated with sand blows generated by the
1811–1812 New Madrid earthquakes near the Mississippi River28,38.
Similar surface expressions of liquefaction (i.e., sand blows) were also
reported across the Bengal basin following the 1897 Shillong Massif
earthquake46, but to our knowledge there is no comparable record of
vertical exposures like we present here.

Subordinate seismite archive
In addition to the main sand dikes, other subordinate deformation
features (Fig. 5) also support a seismic origin. The first example is the
disturbed bedding of a 30-cm thick unit of silt-to-very-fine sand
(<125 µm), which is positioned within the cappingmud unit ~1m below
the ground surface (Fig. 5a). The decimeter-scale, silt-sand unit isfinely
laminated and typical of small splays or overbank deposits in the

Fig. 5 | Subordinate seismite features. Numerous other seismite features were
evident in the sediment exposure including (a) dish-structured and convolute-
bedded sand layer (inset from Obermeier, 2009111), (b, c) mud filled pipes and

microfracture, (d) brecciatedmudclasts, and (e)mixingof the convolute sand layer
(panel a) and crosscutting sand dike.
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proximal floodplain, but in this example the laminae are strongly
convoluted from being partially fluidized after deposition. Since the
fine sands of this fluidized layer also flow into the margins of the sand-
dike (Fig. 5e), it is required that both sand bodies were fluidized con-
temporaneously. Furthermore, fluidization of the silt-sand unit sug-
gests that it was under-consolidated and thus not very old when the
sand dike breached it during the earthquake, consistent with the OSL
ages showing it to have been deposited just over a century before
overbank deposition ceased following the river avulsion (Fig. 3a).

Other subordinate features that help to constrain the timing and
mechanisms of disturbance are mud-filled pipes and micro-fractures
that crosscut the sand dikes and capping mud unit. These pene-
contemporaneous intrusions appear as roughly cylindrical pipes of
dark brown mud (3–10 cm diameter, Fig. 5a, b) that all have arcuate,
mud-filled micro-fractures radiating from their centers (Fig. S1b). We
interpret these dark-colored sediments as disseminated organics and
fluidized muds that were generated at the ground surface and infilled
void spaces created by the sustained shaking of trees and their root
systems. It is the ubiquitous presence of mud-filled microfractures
radiating from these mud pipes that indicates the surrounding sedi-
ments were being actively compressed by tree-root motion. The pos-
sibility that these features were formed during a wind event can be
ruled out by themudpipes andmicro-fractures that formedwithin one
of the sand dikes (Fig. 5a); in this instance, the mud pipe and its
microfractures are both deformed upward in the direction of sand
injection, indicating that the mud pipes and sand dikes formed con-
temporaneously – or more specifically, the mud pipes probably
formed during the waning phase of dike emplacement, enabling their
preservation. The abundant formation ofmud pipes also suggests that
the earthquake occurredduring thewet season,when standing surface
water and saturated soils make fine surface sediments subject to
fluidization.

Event reconstruction
The preservation of large, extensive, and under-filled channel scars
such as those documented here (Fig. 1b, Fig. S3) is rare for the Ganges
and Brahmaputra rivers, because their high-water discharge and
sediment loads typically infill old channel courses with sand during the
avulsion process47,48. Thus, (i) the scale and distribution of the aban-
doned channel reaches, (ii) the abrupt cessation of sand deposition,
(iii) themuddy and only partial infilling of the paleochannel, and (iv) its
enduring, topographically low surface expression all suggest that this
was an abrupt avulsion involving amajor reorganization of the Ganges
River system. In contrast, a gradual autogenic avulsion6,7 would be

inconsistent with the sharp termination of both sand transport and
overbank deposition along this 85-km channel-belt reach. Further-
more, OSL ages from the cutbank floodplain (Fig. 3) indicate that
deposition had been active for only a few hundred years (from ~2.7 ka
to ~2.5 ka). This two-century period is considerably shorter than the
~1–2 millennia recurrence interval for autogenic avulsion49 or delta-
lobe cycles50 in the Bengal delta.

Like the record of channel avulsion, the archive of clastic sand
dikes allows for a partial reconstruction of the associated paleo-
earthquake event. Extensive research on earthquake impacts has
yielded empirical relationships between earthquakemagnitude and (a)
the distance at which liquefaction occurs and (b) the width of resulting
sand dikes37,39,51 (Fig. 6). The Ganges floodplain sand dikes presented
here are located >180 km from the two closest seismically active zones
that occur around the Shillong Massif ~200–300 km to the northeast52

and along the locked portion of the Indo-Burman subduction zone
~180–280km to the east12,53 (Fig. 1 and S8). The generation of lique-
faction at these distances suggests a minimum earthquake magnitude
ofM 7.5–8.0 (Fig. 6a), with event scales ofM > 8.0 more typical for the
major liquefaction and sand-dike formation we document39 (Fig. 6a).
Furthermore, the seismogenic zones at Shillong Massif and the Indo-
Burman subduction regions are both capable of producing M > 8
earthquakes54. Shillong Massif was subjected to a ~M 8 earthquake in
189746,55,56 that generated widespread liquefaction in Bengal basin46,57.
The Indo-Burman subduction zone along the Chittagong-Arakan coast
produced a ~M 8.5 earthquake in 176258,59.

The width of sand dikes can also be used as a general proxy for
earthquake magnitude, and these Ganges floodplain dikes are com-
parable to the largest terrestrial sand dikes reported in a recent global
compilation37 (Fig. 6b). Their 30–40 cm width implies a minimum
M ~ 6.5 event, but most similarly sized dikes are associated with much
strongerM > 7 events (Fig. 6b). Taken together, both size and distance
relationships suggest that the ~2.5 ka earthquakewas likely in the range
of M 7.0–8.0. Such an event could originate as a M 7.0 splay-fault
rupture in the Indo-Burman ranges 180+ km to the east, or as a largerM
8.0 megathrust rupture produced at either the Shillong or Indo-
Burman fronts. Regardless of the earthquake’s specific source or
magnitude, its impact was immense.

Collectively the sand dikes and abandoned paleochannel record
the cascading hazards of far-reaching subsurface liquefaction and an
abrupt avulsion of the mainstem Ganges River, each triggered by a
major (~M 7.0–8.0) earthquake that originated >180 km away. The
relationship between these cascading hazards is that earthquake-
generated ground roll and shallow-sediment liquefaction are plausible

Fig. 6 | Earthquake magnitude reconstructions. Reconstructions of earthquake
magnitudedrawn fromglobal datasets relating to (a) distance39 and (b) dikewidth37

suggest at least a ~M 6.5 and likely a ~M 7.0–8.0 paleo-event. The red zones indi-
cates the minimummagnitude values based on the range of potential distances to

the two likely source areas (Shillong Massif at 200–300 km, and the Indo-Burman
subduction zone at 180–280 km) and widths (0.3–0.4m) of the two primary dikes.
The pink zones indicate typical values for the observed ranges.
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mechanisms for channel avulsion by rerouting surface water on the
low-gradient delta plain (~10−4 to 10−5 slope), where water flow paths
are susceptible to subtle elevation or topographic changes. Recently,
differential subsidence hypothetically linked to major Bengal earth-
quakes in 1762 and possibly ~900 CE has been inferred from the rapid
burial and preservation of salt kilns at coastal archaeological sites60,61

and uplifted micro-atoll corals62.
Similar observations of rapid topographical change along the

banks and proximal tributaries of the Mississippi River are docu-
mented for the 1811–1812 New Madrid earthquakes, resulting in what
Charles Lyell referred to as “the sunk country”63,64. Water-flow disrup-
tions have also occurred in the Rann of Kutch region of western India,
where the 1819 Allah Bund (‘Damof God’) earthquake generated an80-
km-long fault scarp damming several local rivers16,25,65. Prior seismic
activity between 712 and 1361 CE is thought to have transformed parts
of the Rann of Kutch from a coastal lowlandwith navigable channels to
the seasonal saline lake persisting today, which Lyell referred to as
“neither land nor sea”16,26,66. Yet, it is important to keep in mind the
limitations of historical records and archaeological correlations29. The
environmental impacts of the New Madrid and Kutch earthquakes are
descriptively rich, but the relative contributions of river flooding ver-
sus tectonic subsidence are difficult to discern in these older accounts.

If confirmed for the Bengal basin, rapid differential
subsidence60–62 would be consistent with the potential for earthquakes
to abruptly alter delta-plain elevations and river gradients. We further
infer that the earthquake and avulsion occurred during the wet mon-
soon season when (i) sediments are saturated and more prone to
failure, (ii) liquefaction potential rises with water loading and over-
pressure, (iii) lateral water gradients increase during bankfull river
discharge, and (iv) high water discharge is more capable of

channelizing a new flow path. The 1950 Assam earthquake occurred in
August during themonsoon, triggering extensive landsliding and bank
failures, with the vastly increased sediment load creating changes in
elevation, width, and braiding along the Brahmaputra River67,68. Water
loading may also be a plausible trigger for major fault rupture, as the
mass ofmonsoon-fedwater that seasonally inundates the Bengal basin
is sufficiently immense to cause up to 60mm of elastic strain in the
upper lithosphere69.

Discussion
Bankfull, high-discharge flood events are common annual occurrences
in the monsoon climates of southeast Asia70–72, where most large river
basins are also tectonically active. Based on the results presented here,
these populous regions may be susceptible to added risk from the
cascading hazard of earthquake-triggered river-channel avulsions.
Monsoonprecipitation has varied over pastmillennia and is forecast to
yield both increased precipitation and sediment load due to anthro-
pogenic climate change73–75. Impacts of climate change are not
restricted to the Himalaya, and many lowland rivers worldwide have
experienced unprecedented high-magnitude flood events in recent
decades related to snow melt76, increasing frequency and magnitude
of tropical storms77,78, and extreme rainfall events in their
catchments79. In addition to directly increasing stream power and
destabilizing banks, enhancedflooding candrive transient lithospheric
compression through water loading. Like the elastic strain observed in
the seasonally flooded Bengal basin (up 60mm)69, record-breaking
rainfall during Hurricane Harvey on the Texas coast, USA in 2017
caused up to 21mm of elastic compression of Earth’s crust80. While
flood-risk forecasts are somewhat geographically variable, there is
broad consensus that flood risk is increasing as a direct consequence

Fig. 7 | Expansion of dredge-fill construction. a Dredge-fill construction sites
(yellow outline) since 2003 in the vicinity of Dhaka, a capital megacity. Typically
3–4m of medium-fine-sized river sands are pumped onto the low-lying floodplain
to form the construction base. b The number and cumulative area of dredge-fill
sites on Holocene deltaic lowlands near Dhaka has increased in the past two

decades; nearly 30 sites now encompass ~4000 hectares (40 km2) of new devel-
opment. c Time-series example of a 20-hectare dredge-fill site near Dhaka, now
serving as amajor container port and diesel power station. Images and data in (a, c)
are from Google Earth Engine110.
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of a globally warming climate81–84. Considering high-magnitude bank-
full discharge as a setup for an earthquake-triggered avulsion, climate
change may increase susceptibility of these basins to unanticipated
landscape responses as documented here.

Humans also play a direct role in landscape and societal vulner-
ability to cascading hazards through development practices and water
extraction, storage, and diversion. For instance, engineering solutions
that constrain waterways increase flood risk by lowering a river sys-
tem’s capacity to accommodate the high-magnitude events that are
becoming more common, often with catastrophic results85–87. A pro-
minent example is the 2008 avulsion of the Kosi River, a large tributary
of the Ganges River, which shifted course by over 120 km during a
seasonal flood due to the compounding effects of downstream river
control structures88,89. Moreover, urbanization, industrialization, and
population pressure extend the potential damages of flooding, lique-
faction, and avulsion to lowland cities and agricultural plains81,90,91. In
sedimentary basins such as the Bengal and others draining the Hima-
layan arc, growing urban centers and industrial development are
commonly constructed on saturated, under-consolidated Holocene
sands susceptible to liquefaction92–94. This is acutely illustrated by
dredge-fill construction sites around Dhaka (Fig. 7a, Fig. S10), a rapidly
growing megacity and the capital of Bangladesh, where much new
construction has been forced onto a flood-prone deltaplain that is
commonly raised abovewater levels by adding ~3–4mof dredged river
sand. Now covering almost 40 km2 of reclaimed bottomland in the last
two decades (Fig. 7b), these highly liquefaction-prone dredge-fill sites
(Fig. 4) support central private or public industrial infrastructure such
as transportation hubs and power stations (Fig. 7c, Fig. S11).

Prior research on cascading hazards in coastal settings has recog-
nized tsunami flooding and landslides due to earthquakes and empha-
sized the need for better planning and preparation for such cascading
events95,96. We show that earthquake-driven avulsion of large river net-
works is another real, yet largely unrecognized, threat to seismically
active lowlands. An earthquake and resulting channel avulsion could
together cause widespread sediment liquefaction and extensive river
flooding, in addition to the direct damage of seismic shaking to infra-
structure. Such cascading hazards of a major earthquake, widespread
liquefaction, and river-channel avulsionwould be a devastatingmodern
occurrence in the Bengal basin and a risk that warrants further study.
Numerous sedimentary basins in tectonically active settings worldwide
such as those of the Ayeyarwaddy, Bisagno, Chao Phraya, Colorado,
Copper, Fraser, Indus, Jordan, Klamath, San Joaquin, Santa Clara,
Yangtze, andYellow rivers occupy similar situations79,97–106 andmay face
unrecognized hazards as the result of seismic risk.

Methods
Sedimentology and stratigraphy
Stratigraphywas determined up to 5.8mdepth by hand coring with an
Edelman hand auger and gouge for 2 boreholes (one including the pit
exposure) at the seismite site, 11 boreholes in and on the banks of the
paleochannel, and one borehole in the floodplain ~85 km southeast
toward theBayof Bengal. These shallow stratawere described in 10-cm
intervals with attention to sediment texture and color. Three long
boreholes includingone at the seismite site (Fig. 3b) and twowithin the
paleochannel (Fig. 2a) were obtained by tube-well drilling. Sediment
samples from the 43-, 61-, and 91-m-long boreholes were described in
2–3m intervals. An overview of all boreholes and exposures is given in
Supplementary Data 1. The extent and character of sand dikes and
other soft-sediment deformation and seismite features were surveyed
on cleaned exposedwalls and floors of a freshly dug and unfilled pond,
and their orientation was mapped using a theodolite. Bulk major and
trace element concentrations, including strontium, weremeasured on
20 g of dried bulk sediment using a portable XRF (Thermo-Scientific
Niton XL3Analyzer). The grain-size distributions of each luminescence
sample and of sediment obtained from the BNG-MS3 borehole were

measured by laser diffraction using a Malvern Mastersizer 3000
particle-size analyzer.

Chronology
Fourteen samples for OSL dating (Table S2.2) were obtained with a
light-tight vertical lined sampler which collects 30-cm of undisturbed
sediment within a borehole and by hammering light-tight, lined PVC
tubes horizontally into exposed pond walls. All samples were analyzed
for grain-size distribution and bulk strontium content (Table S2.2)
which is an indicator of provenance of sand-rich deposits34. Lumines-
cence dating was performed using the 4–11 or 4–20 micron silt
fraction29 (Table S2.3) which was isolated and measured using proce-
dures of ref. 107 and described below. A multiple-signal single-aliquot
regenerative dose (MS-SAR) protocol108 was used to screen the sam-
ples for sensitivity and paleodose. Two standard SAR protocols with
recuperation, recycling, and IR depletion tests were applied to purified
quartz; onewith a 240 °Cpreheat and four regenerative doses forhigh-
paleodose (>5Gy) samples and one with a 200 °C preheat and three
regenerative doses for low-paleodose (<5Gy) samples. Dose recovery
ratios of 1.013 ± 0.006 (n = 41) and 1.036 ± 0.004 (n = 45), respectively,
verified the measurement sequences (Fig. S7). Early background
subtraction109 was used tooptimize the relative contributionof the fast
component to thequartzOSL signal. Thepaleodosewas calculated as a
mean and standard error of at least 3 and most often 6 multigrain 10-
mm diameter (~2mg) silt aliquots per sample. Dose rate was obtained
using mainly standard procedures including measurement of radio-
nuclide activities of dried, ashed, and ground bulk sediment on a high-
resolution broad-range gamma spectrometer. A water content cor-
rection based on grain size and seasonality was applied to unsaturated
samples to estimate their time-averaged water content (Fig. S4).
Luminescence ages were determined as the paleodose divided by the
dose rate and are reported with one sigma uncertainties. Notably, one
sample yielded no measurable quartz and thus no luminescence age.
The last occurrence of active sand transport in the paleochannel was
determined as a weighted mean of the two pointbar sand samples
(Fig. 2a). Overbank aggradation rate was calculated bydifferencing the
ages and depths for OSL samples MA I-2 and MA I-3 (Fig. 3a), which
were located near the top of the floodplain unit (below the surface
mixing zone) and near its base, respectively. Detailed luminescence-
dating methodology and interpretation is given in the Supplementary
Information and resulting data for each sample are provided in Sup-
plementary Data 3.

Event magnitude and liquefaction risk
The Supplementary Information provides a detailed consideration of
the tectonic setting of the Bengal basin and of prior Bengal Basin
earthquakes on record. This information was used to support our
reconstruction of the paleo-earthquake including likely origin and
magnitudes that are possible for the Bengal Basin. The magnitude of
the event was estimated based on general relationships with distance
to origin and dike width that were established by prior studies using
global datasets of known-magnitude events37,39. Dredge-fill construc-
tion sites were quantified using Google Earth Engine110 to establish the
location, timing, and area of site development for five-year intervals
over the last two decades (2003–2023).

Data availability
The data generated in this study are provided in the Supplementary
Information and Supplementary Data files. Supplementary Data 1–3
are offered as once excel file with three sheets.
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