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SUMMARY
To assess the transcriptomic profile of disease-specific cell populations, fibroblasts from patients with pri-
mary open-angle glaucoma (POAG) were reprogrammed into induced pluripotent stem cells (iPSCs) before
being differentiated into retinal organoids and compared with those from healthy individuals. We performed
single-cell RNA sequencing of a total of 247,520 cells and identified cluster-specific molecular signatures.
Comparing the gene expression profile between cases and controls, we identified novel genetic associations
for this blinding disease. Expression quantitative trait mapping identified a total of 4,443 significant loci
across all cell types, 312 of which are specific to the retinal ganglion cell subpopulations, which ultimately
degenerate in POAG. Transcriptome-wide association analysis identified genes at loci previously associated
with POAG, and analysis, conditional on disease status, implicated 97 statistically significant retinal ganglion
cell-specific expression quantitative trait loci. This work highlights the power of large-scale iPSC studies to
uncover context-specific profiles for a genetically complex disease.
INTRODUCTION

Glaucoma is the leading cause of irreversible blindness

worldwide and experts predict it will affect approximately 80

million people by 2040.1 The most common subtype—primary

open-angle glaucoma (POAG)—is characterized by an open

iridotrabecular meshwork angle and progressive degeneration

of retinal ganglion cells (RGCs), which culminates in loss of visual

field.2 Therapeutic options are currently limited; all are directed

at lowering intraocular pressure (IOP), which has been shown

to slow but not fully prevent or reverse visual loss.3 Elevated

IOPwas long considered a distinguishing feature of POAG; how-

ever, it is now clear that it is not a direct determinant of disease
This is an open access article under the CC BY-N
development.4 Patients with elevated IOPmay not develop glau-

comatous optic neuropathy, while those with IOP within the

normal population range may sustain significant RGC loss.5–7

POAG has one of the highest heritabilities of all common and

complex diseases,8,9 and much work has focused on dissecting

its genetic architecture. The genetic etiology of POAG is varied:

rare genetic variants, e.g., myocilin (MYOC)10 and optineurin

(OPTN),11 cause disease with high penetrance, while common

variants have smaller effect sizes. Genome-wide association an-

alyses (GWAS) have identified over 100 independent loci that

carry a common risk allele associated with an increased risk of

open-angle glaucoma,12 although many of these are associated

with variation in IOP.13–20 Unlike rare variants that largely
Cell Genomics 2, 100142, June 8, 2022 ª 2022 The Authors. 1
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contribute to disease by changing protein coding, common

variants predominantly act via changes in gene regulation.21

Mapping expression quantitative trait loci (eQTL) is one of the

powerful approaches used to provide functional evidence of

the mechanisms of the common genetic variants, allowing the

allelic effect of a variant on disease risk to be linked to changes

in gene expression. To avoid spurious associations, and to best

understand the cellular effects of changes in gene expression,

eQTL mapping needs to be conducted for cells that are patho-

physiologically relevant to the disease. In the case of glaucoma,

this includes trabecular meshwork cells and RGCs.

The molecular profiling of RGCs in normal and diseased tissue

would improve our understanding of the mechanisms that bear a

disease risk or contribute to glaucoma development. Unfortu-

nately, it is impossible to obtain or molecularly profile RGCs

from living donors in a non-invasive manner. To overcome this,

somatic cells can be reprogrammed into patient-specific

induced pluripotent stem cells (iPSCs),22,23 which can then be

differentiated into RGCs.24,25 Over the years, multiple protocols

have been developed to generate RGCs in vitro.26 Human retinal

organoids show a stratified cellular organization closely

resembling the developing human neural retina,27–32 and thus

it is now possible to generate organoid-derived RGCs for down-

stream applications, including disease modeling25,33,34 and cell

transplantation.35 These constructs can also be subjected to

single-cell RNA sequencing (scRNA-seq) to distinguish cell

types based on their unique transcriptional signature and

examine rare populations that would be missed using bulk

RNA-seq.36–38 Here, we used scRNA-seq to characterize the

transcriptomic profile of the organoid-derived retinal cells, in

particular RGCs generated from a large cohort of the patient-

derived iPSCs. We identified a number of cell-type- and dis-

ease-specific eQTLs. Using an additive linear model, a total of

4,443 eQTLs were found to be associated with 3,860 SNPs. By

combining our data with recent GWAS results in a transcrip-

tome-wide association study (TWAS), seven genes were

identified to be significantly associated with glaucoma

development.

RESULTS

Large-scale generation of patient iPSCs, differentiation
into retinal organoids, and scRNA-seq
We recruited a large cohort of 183 individuals, which included

healthy (n = 92, of whom 50 were female) and patients with

advanced POAG (n = 91, of whom 50 were female) (Table S1).

The mean ± SD age at biopsy for controls was 68.1 ± 8.2 years,

and for case subjects it was 69.1 ± 14.4 years. Participants

underwent skin biopsy, and fibroblasts were cultured and

reprogrammed to iPSCs using episomal vectors aswe described

previously.39 Genotyping data were also generated from partici-

pants and, after quality control and imputation, yielded 7,691,208

autosomal SNPs at a minor allele frequency above 0.01.

iPSC lineswere differentiated in batches (25 batches, 6–8 lines

with equal numbers of control and POAG lines per batch) to neu-

ral retina for 28 days in adherent cultures. Retinal organoids were

then excised, cultured in suspension for 7 days and plated onto

Matrigel for an additional 2-week period to allow neuronal
2 Cell Genomics 2, 100142, June 8, 2022
outgrowth fromRGCs, and harvested for scRNA-seq (Figure 1A).

This timeline was based on work by others, which described

RGC emergence by day 35 of retinal organoid differentiation29

and RGC neurite extension following plating of dissociated orga-

noids by day 40.30 Twenty-two lines did not differentiate to retinal

organoids and were discarded (healthy, 11 lines, 1 of which was

female; POAG, 11 lines, 5 of whichwere female) (Figure S1). Cells

from the remaining 161 individual cell lines were harvested and

divided into 25 batches for scRNA-seq, with each batch contain-

ing cells from 6 to 8 cell lines with a targeted capture of 2,000

cells per line.

A total number of 330,569 cells were captured via scRNA-seq

and sequenced to a mean read depth of 41,020 per cell

(Table S2). Individual cells were traced back to their cell-line

donor using a combination of transcriptome- and genotype-

based methods (Table S3). Lines were removed based on the

following criteria: failed genotype and virtual karyotyping quality

control, monogenic POAG, non-European background, and low

cell-capture numbers (Figure S1). Individual cells were removed

based on scRNA-seq metrics as described in the STAR

Methods. A total of 247,520 cells (healthy, 128,175; POAG,

119,345) from 110 iPSC lines (healthy, 56 of which 35 were

female, mean ± SD age of samples 67.5 ± 7.8 years; POAG, 54

of which 33 were female, 71.8 ± 11.5 years) were retained for

subsequent analyses.

Identification and characterization of 23 subpopulations
from 247,520 cells
Clustering identified 23 subpopulations distributed across all cell

lines and conditions (Figures 1B and 1C). Differential expression

markers were used to classify the subpopulations to different

retinal cell classes based on canonical markers40–43 (Figure 1D;

Tables S4 and S5). We compared the distribution of cell types

between patients with POAG and healthy controls and observed

no statistically significant differences between the groups after

correction for multiple testing (Figure S2; Table S6). However,

the proportions of subpopulations between individual cell lines

differed (Pearson’s chi-square test, p < 2.2 3 10�16).

Retinal progenitor cells (RPCs) represented 77.4% of all cells

and localized across 16 subpopulations. RPCs expressed

PAX6 and SOX2 transcription factors, which are key regulators

of neuronal fate,44,45 LHX2, required for maintenance of open

chromatin during retinogenesis46 and gliogenesis,47 and the

RPCmarkers VSX2 and ASCL1 (Figures 1D and S2B). Cell-cycle

genes were not evenly distributed within progenitor subpopula-

tions. The G2/M phase marker MKi67 was predominantly

expressed by cells in RPC1, RPC2, and RPC5. The S phase

marker PCNA was distributed more broadly; however, the

majority of PCNA-positive cells were identified in RPC clusters

1, 2, 4, and 5 (Figure 1D).

RGCs were the second most predominant cell group, repre-

senting 17.0% of all cells across the cohort. Based on previous

work, RGCs were classified by the expression of the following

genes: POU4F2, ISL1, RBPMS, SNCG, GAP43, NEFL/M,

ELAVL4, EOMES, and DCX.48–50 Three distinct RGC subpopula-

tions (RGC1-3), arising from one subpopulation of RPCs (RPC9),

were identified (Figures 1B–1D; Table S4). Pseudotime analysis

confirmed the lineage development of RGC1-3 cell types from
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Figure 1. Generation of retinal organoids and identification and characterization of cell subpopulations

(A) Retinal organoids were generated from iPSCs over a period of 49 days. iPSCs were differentiated as a monolayer for the first 28 days, and then cultured in 3D

as a suspension for 7 days. Resulting organoids were then plated onto Matrigel and grown until retinal ganglion cells started to project out of the organoid at

49 days. These were harvested for scRNA-seq.

(B) Uniform Manifold Approximation and Projection (UMAP) representation of cells grouped into 23 subpopulations, as identified by Louvain clustering.

(C) UMAP plot of the cell types and lineages, as determined by analysis of differentially expressed genes of individual subpopulations and trajectory analysis. RGC

clusters form one branch of the trajectory. Other cell types—RPE, interneurons, photoreceptors, and lens—arise from another branch of the trajectory. The last

main branch consists of differentiating RPC subpopulations. RPC, retinal progenitor cell; RGC, retinal ganglion cell; RPE, retinal pigmented epithelium.

(D) Heatmap of the mean expression of cell-type-specific gene markers across each subpopulation. Expression values have been scaled and converted to Z

scores and genes have been grouped by cell type. AC, amacrine cell; BC, bipolar cell; HC, horizontal cell; MG, M€uller glia; PR, photoreceptor; RPC, retinal

progenitor cell; RPE, retinal pigment epithelium; RGC, retinal ganglion cell.
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a single progenitor population (Figure S3), with POU4F2 and

ISL1 showing increasing expression as cells differentiated

further from a progenitor state (Figure 1D). The expression of

both genes was required for RGC specification and differentia-

tion.51–53 POU4F2 expression was generally higher in the
RGC1 and RGC2 subpopulations than in RGC3, while ISL1

expression was higher in RGC1 and RGC3 compared with

RGC2. The low levels of ATOH7 expression in RGC1 and

RGC3, in conjunction with the fact that cells in these subpopula-

tions expressed markers of differentiated RGCs, such as SNCG,
Cell Genomics 2, 100142, June 8, 2022 3
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RBPMS, GAP43, and NEFM (Figure 1D), suggests that these

subpopulations represent more mature RGCs compared

with those from RGC2. We also identified cells expressing

markers for photoreceptors/bipolar cells (2.6%) and interneu-

rons (1.7%; Table S4). Retinal pigmented epithelial (RPE) cells

localized in one subpopulation and constituted 1.3% of all cells

(Table S4). No M€uller cells were identified. The various subpop-

ulations are fully described in Data S1. These data are consistent

with Sridhar et al.,42 who also found that RPCs and RGCs are the

predominant populations of cells within early retinal organoids.

Finally, to directly compare the similarity of our iPSC-derived

retinal cell types with actual somatic cells, we used scPred—

an unbiased gene-marker free cell classification method.54 Our

cells were re-classified based on a previously described adult

human retinal RNA-seq dataset,55 and a strong overlap between

cell type classifications was observed (Figure S3C).

Trajectory analysis of subpopulations reveals disease-
specific mechanisms in RGC lineages
We studied the ordering of the subpopulations across pseudo-

time by performing trajectory inference using the slingshot pack-

age,56 as described in STAR Methods. Trajectory inference re-

vealed a complex, branching trajectory that consisted of 12

lineages (Figures 1C and 2A). Three of these lineages (6, 7, and

9) comprise RGC subpopulations branching off from RPC9

(Figures 2A and 2B). We examined these lineages in greater

detail by studying gene expression patterns related to disease

and pseudotime. Gene ontology analysis of the RGC lineages re-

vealed an overrepresentation of genes involved in neurogenesis

(Figure 2C). Further to this, there was a significant difference in

the distribution of cells across pseudotime in the lineage

terminating with RGC3 (lineage 7) based on disease status

(Kolmogorov-Smirnov test: p = 0.028).

We then used tradeSeq57 to investigate the nature of this line-

age and determine if disease status affected gene expression

patterns across the trajectory. We identified 1,471 genes that

were differentially expressed between the conditions, across

pseudotime (Benjamini-Hochberg FDR < 0.05) (Table S7). Dis-

ease ontology of these genes was performed using gene set

enrichment analysis,58 and revealed association with four dis-

ease pathways—schizophrenia, psychotic disorders, disease

of mental health, and cognitive disorder, as annotated by the

Disease Ontology database.59 We also applied pseudotime to

cis-eQTL mapping to determine if this had a significant interac-

tion between genotype and POAG. This uncovered one new

eGene—HMGB1—that had pseudotime as a significant

interaction term (p = 1.763 10�7) at SNP rs9578147 (Figure 2D).

Interestingly, HMGB1 is involved with nucleosome stabilization,

and is released from injured cells and induces an inflammatory

response.60 It has been shown to induce RGC death in NMDA-

mediated retinal neurodegeneration,61,62 and is present in

glaucomatous retina.63

The genetic control of gene expression is highly cell-
type specific
We tested for cis-eQTL for each cell population independently

and identified a total of 4,443 eQTL that surpassed the study-

wide significance threshold of FDR < 0.05 (Benjamini-Hochberg
4 Cell Genomics 2, 100142, June 8, 2022
procedure), and the eGene was expressed in at least 30% of

tested donors (Table 1; for full results, see Table S8). The mean

± SD of eQTL identified per cell subpopulation was 202 ± 120

(Table 2), indicating consistent power to detect eQTL and a sim-

ilarity of cell types in each population as expected. We assessed

the overlap of eQTL between cell types and found that themajor-

ity of cis-eQTL are cell type specific (Figure 3A). A total of 647 out

of 3,091geneswith aneQTL (eGenes)weredetected inmore than

one cell type, and only 215 of these eGenes had an eQTL

observed in two or more cell types (Figures 3B and 3C;

Table S9). RPE and RPC14 did not have any overlapping eQTL

with any other cell types, while RPC1 and RGC1 had the greatest

number of overlapping eQTL (27) (Pearson’s correlation: r2 =

0.46, p = 0.02) (Figure 3B). As the majority of subpopulations

are retinal progenitors, non-RPC subpopulations share more

eQTL signals with RPC subpopulations than each other. Two

genes had an eQTL in all subpopulations but RPC2—RPS26

and GSTT1 (Figure 3D). Only GSTT1 had overlapping eQTL in

16 subpopulations, which indicates that the variants associated

with this eQTL are either in linkage disequilibriumwith each other

or are targeting the samecausal variant. Approximately half of the

eGenes detected in the RGC subpopulations (RGC1, 46.9%;

RGC2, 58.9%; and RGC3, 51.1%) were exclusive to this cell

type, and only seven of these eGenes (PPP1R17, RASD1,

NXPH1, IGFBPL1, SAPCD2,KRTAP5-AS1, and TK1) were found

in at least one RGC subpopulation (Figure 3D).

To identify eQTL that had alternative allelic effects under

different disease statuses, we included an interaction term

(SNP:disease status) in the original linear model for each eQTL

identified by the first round of analysis. eQTL with interacting ef-

fects were determined to be significant based on a threshold of

FDR < 0.05 of the interaction term. We tested 4,443 eQTL that

had been mapped with the original linear model and, from these,

we identified 1,399 eQTLswith evidence of significant interaction

between the SNP allelic effect and POAG disease status. Ninety-

seven of these eQTLs were specific to RGC lineage subpopula-

tions and are of particular interest, as the data suggest that the

allelic effect of the SNP differs due to disease (Figure 4A;

Table S10). Interestingly, rs28368130 at chromosome 9p21, a

locus that has been definitively associated with POAG,12,64

was found to influence CDKN2B expression in the RGC1 cell

population with a disease status FDR p = 7.973 10�4. In further

analysis, we identified that there was variation in the number of

donors with a non-zero expression of the CDKN2B gene, sup-

portive of previous work showing allele-specific methylation of

this promoter region.65 We then tested if there was a relationship

between the percentage of donors with non-zero expression

and genotype classes for cases and controls and identified a

significant association across all RGC subtypes (c2,

RGC1 p = 5.17 3 10�11; RGC2 p = 9.42 3 10�10, RGC3 p =

1.57 3 10�14) (Figure 4B).

IGFBPL1 regulates axonal growth in RGCs66 and was also

found to have a statistically significant disease-state interaction

eQTL in the RPC9, RGC1, and RGC2 subpopulations of cells

(Figure 4C). Similarly, SAR1A, which is involved in transport be-

tween the ER to the Golgi apparatus and is associated with

axonal growth,67 has an eQTL identified by rs4746023, in

RGC1 cell types. In patients with POAG, carrying each additional
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Figure 2. Trajectory analysis of cell subpopulations and characterization of pseudotime-related disease pathways

(A) Global lineages were constructed using proliferative subpopulation, RPC1 as the origin, and subpopulations RGC1, photoreceptors, interneurons, RPE, and

lens as the endpoints. This resulted in a branching trajectory, with RGC subpopulations—RGC1, RGC2, RGC3, and their progenitors—RPC9 and RPC13,

segmenting off the main trajectory at RPC11.

(B) The branching trajectory consists of 12 lineages. Three of these lineages, 6, 7, and 9, belong to the RGC subpopulations.

(C) Pathways associated with the RGC lineage over pseudotime.

(D) Relationship between genotype and expression profiles of HMGB1 at SNP rs9578147, in subpopulations RGC1, RGC2, RGC3, and RPE.
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copy of the A allele causes an increase by an average of 1.4 tran-

scripts per cell, which is approximately 2 times higher than in

healthy controls (Figure 4C).

Disease-specific differential expression of genes across
cell types identifies altered transthyretin expression in
POAG RGCs
We next sought to evaluate the relationship between disease

status and regulation of the transcriptome and a cellular level,
testing for differences in the expression levels of genes in each

cell population. In total, after Bonferroni correction, we identified

3,118 genes whose expression was either up- or downregulated

in POAG cases relative to the controls. We can be confident that

these results are due to the genetic effects underlying POAG risk,

as at all steps from iPSC generation, differentiation, cell capture,

and library preparation, the cell lines were either managed in

shared conditions or randomized with respect to disease status

(STAR Methods). Furthermore, no firm environmental factors
Cell Genomics 2, 100142, June 8, 2022 5



Table 1. Breakdown of significant cis-eQTLs detected in the full

cohort and by disease status-conditional tests

Model No. of eQTL No. of eGenes No. of eSNPs

Population 4,484 3,102 3,892

Disease 4,443 3,091 3,860

Control 2,985 2,394 2,492

POAG 2,460 2,090 2,136

The relationship between genotype and expression was tested at loci

within 1 MB of each gene, using four different models. Population and

disease models were tested using Z scores of quantile-normalized

mean expression of all donors, and the population model was used to

test control and POAG donors separately. eQTL were significant based

on the following criteria: FDR < 0.05, gene expressed in at least 30% of

the donors.
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have been found to definitively predispose to POAG risk and are

unlikely to account to a difference in gene expression in differen-

tiated cells, given the epigenetic profile of fibroblast-derived

iPSCs is reset during reprogramming.68,69 Focusing on the three

RCG populations, we identified 144 genes differentially ex-

pressed between POAG cases and controls (Figure 5A;

Tables S10 and S11). Consistent with our observations of cell-

type-specific eQTL, 68.06% of genes were identified as differen-

tially expressed in only one cell type, reinforcing the conclusions

that the genetic effects of POAG are highly cell-type specific.
Table 2. Summary of lead cis-eQTL per subpopulation

Subpopulation No. of lead cis-eQTL No. of eGenes No. of eSNPs

RPC1 539 539 537

RPC2 233 233 232

RPC3 180 180 180

RPC4 377 377 368

RPC5 245 245 245

RPC6 115 115 115

RPC7 108 108 103

RPC8 268 268 263

RPC9 122 122 113

RPC10 261 261 257

RPC11 205 205 201

RPC12 227 227 226

RPC13 147 147 147

RPC14 38 38 38

RPC15 208 208 206

RGC1 382 382 381

RGC2 124 124 123

RGC3 131 131 130

Interneurons 245 245 239

Photoreceptors 184 184 183

RPE 97 97 94

Lens 7 7 7

cis-eQTL from disease model were filtered by the following thresholds:

FDR < 0.05; eGene expression > 30%. Lead cis-eQTL were selected

based on SNP-gene interaction with lowest FDR value.
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Interestingly, TTR was found to be differentially expressed

between POAG cases and healthy controls across all RGC sub-

populations (Figure 5A). Coding variants in TTR are known to

cause familial amyloidotic polyneuropathy, which is frequently

associated with glaucoma.70,71

TWAS identifies novel and refines known genetic
associations for glaucoma
We leveraged these iPSC-derived retinal organoid single-cell

eQTL data with our recently reported multitrait glaucoma

GWAS summary statistics to prioritize glaucoma risk genes in

a TWAS.12 In previous work, we combined GWAS for multiple

genetically correlated traits, and thus used the glaucoma-spe-

cific effect size estimates and p values for SNPs across the

genome.12 In the single-cell TWAS, we identified seven genes

associated with POAG after Bonferroni correction (Figure 5B).

Of the five genes identified in the RGC1 subpopulation, one is

located at a locus (chromosome 17q21) recently associated

with POAG.72 Here, we implicate KANSL1-AS1, which was

also identified as a major eGene for RGCs (Figure 3B).

KANSL1-AS1 was also found by TWAS to be associated with

POAG in the RPC9 subpopulation. The TWAS results also helped

to fine-map potential causal genes at known GWAS

loci.73,74,75,76 Most of the identified genes map to loci that have

been previously associated with POAG.72 In brief, the five

TWAS genes on chromosome 2 are located near GWAS-re-

ported gene BRE and share the same GWAS variant

rs6741499 (or in strong LD),12 which is also associated with

IOP.20 Of these, the top TWAS hit MPV17 encodes a mitochon-

drial inner membrane protein involved in the metabolism of

reactive oxygen species75 and has been found to play an impor-

tant role in the pathogenesis of RGC damage.76 The gene CTD-

3074O7.5 on chromosome 11 from RGC2 subpopulation is near

MALAT1, which is also associated with vertical cup-to-disc

ratio.77 We then compared the TWAS results based on scRNA-

seq data with bulk RNA-seq data. The bulk retinal transcriptome

data were described previously.78 Of the three genes with

available bulk TWAS results, only KANSL1-AS1 was significant

after Bonferroni correction (Pbulk TWAS = 5.99 3 10�6).

DISCUSSION

Here, we present a large-scale scRNA-seq analysis of iPSC-

derived RGCs. We generated over 100 patient-specific iPSC

lines and differentiated them into RGCs using retinal organoids.

Following the capture of over 330,000 cells, we analyzed

258,071 cells from 110 individuals. We identified a total of

4,443 eQTL across all cell types using aggregated, single-cell-

level expression data, including 312 eGenes specific to RGCs.

We tested for shared allelic effects between eSNPs of the 647

eGenes common to more than one subpopulation and discov-

ered that only 215 are due to shared eQTL. This strategy, as

opposed to testing for eGene overlap, helps ensure that the

estimated proportion of shared eQTL is not inflated due to occur-

rences where the same gene’s expression is associatedwith two

independent eQTL in different cell types. POAG culminates in

loss of RGCs, and in iPSC-derived RGCs we identified dis-

ease-associated loci. Analysis, conditional on disease status,
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implicated 97 statistically significant RGC eQTLs, and single-cell

TWAS identified seven genes at loci previously associated with

POAG.

Several recent studies have employed scRNA-seq to charac-

terize transcriptomic changes during human retinal development

using fetal tissue,50,79 retinal organoids,80–82,82–84 or both.42,43

Our results complement these findings and are in concordance

with those of Sridhar et al.42 who also observed RPCs as thema-

jor cell type in early organoids followed by RGCs, photorecep-

tors, and interneurons. Similar observations were made by Lu

et al.43 The absence of glial cells within the retinal organoids in

our dataset is not surprising given that these are generally the

last retinal cells to develop83 and emerged in older retinal
8 Cell Genomics 2, 100142, June 8, 2022
organoids.42 Furthermore, we did not observe statistically signif-

icant differences in cellular composition of organoids derived

from healthy controls and patients with POAG, which suggests

a high level of consistency across differentiation batches.

In the TWAS framework, the gene expression data (association

between SNPs and genes)were used to train predictionmodels to

determine gene expression levels by genetic variants (genetically

regulated gene expression, GReX).84,85 The prediction models

were used to impute gene expression levels in the GWAS dataset

based on the trained weights from multiple-SNP prediction

models, which could be further used to evaluate the association

between imputed gene expression levels and the GWAS pheno-

type (i.e., glaucoma), and to identifygenesassociatedwithdisease
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traits. In this study, we performed the first glaucoma TWAS based

on cell-type-specific expression profiling. The gene expression

profiling between different tissues (e.g., bulk retinas versus sub-

populations belonging to the RGC lineage) could be markedly

different. In our TWAS analysis, the single-cell gene expression

data from different subpopulations were used to train prediction

models, and then to impute the gene expression levels in GWAS

dataset based on summary statistics.86 The single-cell level

resolutionTWAScanprovide new insights into thepotential causal

genes for glaucoma in specific cell types.

It is becomingwidely recognized that the pharmaceutical pipe-

line for drug development has stalled, and that there is a pressing

need for human models of disease to improve our molecular un-

derstanding of common, complex diseases and facilitate preclin-

ical trials.87 We investigated the impact of genetic background

and disease status on gene expression through eQTL mapping.

Highlighting the power of large-scale iPSC studies to uncover

disease-specific profiles, this work lays the foundation for

context-specific drug screening and underscores the efficiency

of using stem cell models for dissecting complex disease.

Limitations of the study
Certain limitations of our study should be noted. Due to the

complexity of the retinal organoid culturing, we only analyzed or-
ganoids derived from 110 individuals. This would have limited

our ability to identify rare and/or low-penetrant genetic variants

associated with glaucoma. Although sufficient for RGC identifi-

cation, the duration for differentiation of our retinal organoids

(49 days) limited our ability to identify all retinal cell types. For

example, ‘‘late born’’ retinal subtypes, e.g., rods or M€uller glia

were not present in our organoids. Nevertheless, recent work

of Sridhar et al. demonstrated similar cellular composition be-

tween retinal organoids and fetal retina at equivalent stages of

development.42
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Antibodies

Mouse anti-hOCT-4 Santa Cruz Cat# sc-5279; RRID: AB_628051

AlexaFluor 488 goat anti-mouse IgG Thermo Fisher Scientific Cat# A11029; RRID: AB_2534088

Mouse anti-hTRA-1-60 (PE-conjugated) Thermo Fisher Scientific Cat# MA-1-023-PE; RRID: AB_2536704

Mouse anti-TRA-1-60 Abcam Cat# ab16288; RRID: AB_778563

AlexaFluor 488 goat anti-mouse IgM Thermo Fisher Scientific Cat# A21042: RRID: AB_2535711

Chemicals, peptides, and recombinant proteins

DMEM, high glucose Life Technologies Cat# 11965118

Fetal Bovine Serum, qualified Life Technologies Cat# 26140079

L-glutamine (200mM) Life Technologies Cat# 25030081

Penicillin-Streptomycin (10,000 U/ml) Life Technologies Cat# 15140122

TeSRTM-E7TM StemCell Technologies Cat# 05914

CellAdhereTM Dilution Buffer StemCell Technologies Cat# 07183

VitronectinTM StemCell Technologies Cat# 07180

StemFlexTM Life Technologies Cat# A3349401

DPBS, no calcium, no magnesium Life Technologies Cat# 14190250

ReLeSRTM StemCell Technologies Cat# 05873

DMEM/F-12 Life Technologies Cat# 11320082

L-glutamine (200mM) Life Technologies Cat# 25030081

MEM Non-Essential Amino Acids solution (100x) Life Technologies Cat# 11140050

Corning� Matrigel� basement membrane matrix VWR Cat# 734-1100

B-27 supplement (50x) Life Technologies Cat# 17504044

FGF basic protein, human recombinant Merck Cat# GF003

NeurobasalTM medium Life Technologies Cat# 21103049

GlutaMAXTM supplement Life Technologies Cat# 35050061

D-(+)-Glucose solution 45 % in H2O Sigma Cat# D8769

N-2 supplement (100x) Life Technologies Cat# 17502048

Bovine Serum Albumin Sigma Cat# A4503-50G

Critical commercial assays

MycoAlert mycoplasma detection kit Lonza Cat# LT07-318

Human Dermal Fibroblasts NucleofectorTM Kit Lonza Cat# VVPD-1001

LS columns Miltenyi Biotec Cat# 130-042-401

MidiMACS Separator Miltenyi Biotec Cat# 130-42-301

MACSQuant Analyzer 10 Miltenyi Biotec Cat# 130-096-343

Anti-TRA-1-60 microbeads, human Miltenyi Biotec Cat# 130-100-832

Papain Dissociation System Worthington Biochemical

Corporation

Cat# LK003153

Countess IITM Fl Automated cell counter Thermo Fisher Scientific Cat# AMQAF1000

QIAamp DNA Mini kit Qiagen Cat# 51306

SimpliNanoTM Spectrophotometer GE Life Sciences Cat# 29061711

ChromiumTM Single Cell 3’ Library, Gel Bead &

Multiplex Kit, 16 rxns

10X Genomics Cat# PN-120233

DynabeadsTM MyOneTM Silane Thermo Fisher Scientific Cat# 37002D

SPRIselect beads Beckman Coulter Cat# B23318

NovaSeq 6000 S4 Reagent kit Illumina Cat# 20039236
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Deposited data

Single-cell RNA-seq This manuscript (https://data.

humancellatlas.org)

77780d56-03c0-481f-aade-2038490cef9f

Experimental models: cell lines

Human iPSCs This manuscript (https://data.

humancellatlas.org)

77780d56-03c0-481f-aade-2038490cef9f

Software and algorithms

NovaSeq Control Software v1.6 Illumina https://support.illumina.com/sequencing/

sequencing_instruments/novaseq-6000/

downloads.html

GenomeStudio v2.0.4 Illumina https://support.illumina.com/array/array_

software/genomestudio/downloads.htmlGenomeStudio PLINK Input

Report Plug-in v2.1.4

Illumina

10x Cellranger 10X Genomics https://www.10xgenomics.com/software/

Minimac3 Das et al., 201688 https://github.com/Santy-8128/Minimac3

Eagle v2.3 Loh et al., 201689 https://data.broadinstitute.org/alkesgroup/Eagle/

ascend R package Senabouth et al., 201990 https://github.com/powellgenomicslab/ascend

demuxlet Kang et al., 201891 https://github.com/statgen/demuxlet

scrublet Wolock et al., 201992 https://github.com/AllonKleinLab/scrublet

Monocle 3 R package Cao et al., 201993 http://cole-trapnell-lab.github.io/monocle-

release/monocle3

Seurat 3.1 R package Butler et al., 201894 and

Stuart et al., 201995
https://github.com/satijalab/seurat

UMAP Becht et al., 201896 https://github.com/lmcinnes/umap

Slingshot 1.4.0 R package Street et al., 201856 https://github.com/kstreet13/slingshot

tradeSeq 0.99.80 Van den Berge et al., 202057 https://statomics.github.io/tradeSeq/index.html

limma 3.42.2 R package Ritchie et al., 201597 https://bioconductor.org/packages/release/

bioc/html/limma.html
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Alex He-

witt: hewitt.alex@gmail.com.

Material availability
There are restrictions to the availability of the human iPSC lines generated in this study due to MTA.

Data and code availability
d Single-cell RNA-seq data have been deposited at the Human Cell Atlas (https://data.humancellatlas.org/explore/projects/

77780d56-03c0-481f-aade-2038490cef9f). Accession number: 77780d56-03c0-481f-aade-2038490cef9f

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participant recruitment
All participants gave informed written consent.98 All experimental work was approved by the Human Research Ethics committees of

the Royal Victorian Eye and Ear Hospital (11/1031H, 13/1151H-004), University of Melbourne (1545394), University of Tasmania

(H0014124) and the University of Western Australia (RA/4/1/5255) as per the requirements of the National Health &Medical Research

Council of Australia (NHMRC) and in accordance with the Declarations of Helsinki. We recruited a large cohort of patients with POAG
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and sex-, ethnically-matched individuals, through the Glaucoma Inheritance Study in Tasmania and the Australian and New Zealand

Registry of Advanced Glaucoma, local ophthalmic clinics and adjunct studies (mean ± SD age: 69.1 ± 14.4 years at biopsy for case

subjects; 68.1 ± 8.2 years at biopsy for controls). POAG patients required a clinical diagnosis of advanced normal tension glaucoma,

as they are presumed to have RGCswith an increased susceptibility to degeneration compared to people with trabecular dysfunction

or a very high intraocular pressure. As described previously, advanced glaucoma was defined by severe visual loss resulting from

POAG.64,99,100 In the worst eye a vertical cup:disc ratio >0.95 and a best-corrected visual acuity worse than 6/60 due to POAG or

on a reliable Humphrey Visual Field a mean deviation of% -22dB; or at least 2 out of 4 central squares involved with a Pattern Stan-

dard Deviation of <0.5%. The maximum documented pre-treatment IOP, measured by Goldmann applanation tonometry, was re-

corded. To fulfil a standard clinical diagnosis of Normal Tension POAG the maximum recorded IOP was required to

be < 22 mmHg.101 Clinical-exclusion criteria were signs of secondary or syndromic glaucoma. For each control participant, a com-

plete ophthalmologic evaluation (incorporating automated visual field testing, fundus and optic disc imaging, corneal pachymetry)

was performed. An ophthalmic history was obtained, with questions centered on age at diagnosis, family history, surgical interven-

tion for glaucoma or cataract, macular degeneration, retinal detachment, and refractive surgery. Control subjects, with no known

family history of glaucoma, and who had normal IOP, optic discs (optical coherence tomography retinal nerve fibre layer analysis

within age-matched normal limits), and visual fields, were selected for analysis.

METHOD DETAILS

Fibroblast culture
Skin biopsies were obtained from non-sun exposed regions using a 3mm2 dermal punch. Fibroblasts were expanded, cultured, and

banked in DMEMwith high glucose, 10% fetal bovine serum (FBS), L-glutamine, 100 U/mL penicillin and 100 mg/mL streptomycin (all

from Thermo Fisher Scientific, USA). All cell lines were mycoplasma-free. Fibroblasts at passage (p) 2 were used for reprogramming.

GENERATION, SELECTION, AND iPSC MAINTENANCE

A TECAN liquid-handling platform was used to maintain and passage iPSCs, as described in.38 iPSCs were generated by nucleofec-

tion with episomal vectors expressing OCT-4, SOX2, KLF4, L-MYC, LIN28 and shRNA against p53102 in feeder- and serum-free

conditions using TeSRTM-E7TMmedium as described previously.39 The reprogrammed cells were maintained on the automated plat-

form using TeSRTM-E7TMmedium, with daily medium change. Pluripotent cells were selected by sorting with anti-human TRA-1-60

Microbeads.39 Cell number was determined; cells were subsequently plated onto vitronectin XFTM-coated plates and in StemFlexTM

medium. Subsequent culturing was performed on the automated platform using StemFlexTM medium, which was changed every

2-3 days. Passaging was performed weekly on the automated platform using ReLeSRTM onto vitronectin XFTM-coated plates as

described in 39. Pluripotency was assessed by expression of the markers OCT3/4 (sc-5279, Santa Cruz Biotechnology) and

TRA-1-60 (MA1-023-PE, Thermo Fisher Scientific, USA) by immunocytochemistry. Virtual karyotyping was undertaken using Illumina

Human Core Exome or UK Biobank AxiomTM Arrays, as described in.38 The iPSC lines FSA0001, FSA0002, FSA0005, FSA0006,

IST2168, IST2607, MBE1006, MBE2900, MBE2906, MBE2909, TOB0199, TOB0224, TOB0412, TOB0421, TOB0431, TOB0435,

TOB0474, WAB0450, WAB0069 were characterised in.38

DIFFERENTIATION OF iPSCs INTO RETINAL ORGANOIDS

Retinal organoids were generated following29 with modifications. Briefly, on day 28 formed retinal organoids with surrounding tissue

were excised using a 21G needle. They were maintained in suspension culture for 7 days in PRO medium (DMEM/F12, 1:1,

L-glutamine, 1% non-essential amino acids, Penicillin-Streptomycin 10,000 U/ml) supplemented with B27 and FGF2 (10 ng/mL).

On day 35, organoids were transferred to Matrigel-coated 24-well tissue culture plates and maintained for 14 days in NDM medium

(Neurobasal, 1%MEM non-essential amino acids, 1% GlutaMAX, 1% glucose (45%), Penicillin-Streptomycin 10,000 U/ml) with 2%

B27 and 1% N2 added fresh. Medium was changed every 2-3 days. Optic cups were dissociated with Papain Dissociation System

following the manufacturer’s instructions. Briefly, cells were harvested with papain (20 U/mL) and DNase I (2,000 U/mL) for 30 min at

37�C. Subsequently, NDMmedium was added at a 1:1 ratio and cells were gently triturated with a P1000 pipette followed by centri-

fugation (5 min, 300 g, 4�C). Cells were resuspended in 1 mL of 0.1% BSA in PBS solution. Subsequently, cells were counted and

assessed for viability with Trypan Blue using a Countess II automated counter, then pooled at a concentration of 1000 cells/mL

(13 106 cells/mL). Final cell viability estimates ranged between 79-99%. Cell lines were harvested in 25 batches (6-8 lines per batch)

and multiplexed for scRNA-Seq with a targeted capture of 2,000 cells per line.

QUANTIFICATION AND STATISTICAL ANALYSIS

Transcriptome profiling of single cells from retinal organoids and cell-based quality control
Multi-donor single-cell suspensions were prepared for scRNA-seq using the Chromium Single Cell 30 Library & Gel bead kit

(10x Genomics; PN-120237). Each pool was loaded onto individual wells of 10x Genomics Single Cell A Chip along with the reverse
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transcription (RT) master mix to generate single-cell gel beads in emulsion (GEMs). Reverse transcription was performed using a

C1000 Touch Thermal Cycler with a Deep Well Reaction Module (Bio-Rad) as follows: 45 min at 53�C; 5 min at 85�C; hold 4�C
cDNA was recovered and purified with DynaBeads MyOne Silane Beads (Thermo Fisher Scientific; catalog no. 37002D). Subse-

quently, it was amplified as follows: for 3 min at 98 �C; 123 (for 15 s at 98�C; for 20 s at 67�C; for 60 s at 72 �C); for 60 s at 72�C;
hold 4�C followed recommended cycle number based on targeted cell number. Amplified cDNA was purified with SPRIselect beads

(Beckman Coulter; catalog no. B23318) and underwent quality control following manufacturer’s instructions. Sequencing libraries for

each pool were labeled with unique sample indices (SI) and combined for sequencing across two 23 150 cycle flow cells on an Illu-

mina NovaSeq 6000 (NovaSeq Control Software v1.6) using S4 Reagent kit (catalog no. 20039236). Raw base calls from the

sequencer then underwent demultiplexing, quality control, mapping and quantification with the Cell Ranger Single Cell Software

Suite 3.1.0 by 10x Genomics (https://www.10xgenomics.com/). Processed reads from the sequencer were mapped to the Homo

sapiens reference hg19/GRCh37 from ENSEMBL (release 75), and the pipeline was run using the estimated cell count value of

20,000. scRNA-seq data from each pool underwent quality control separately in R using the ascend package.90 Cells were removed

if they did not meet thresholds calculated from 3Median Absolute Deviations (MAD) of the following statistics: total UniqueMolecular

Identifier (UMI) counts, number of detected genes, and fraction of mitochondrial and ribosomal transcripts to total expression.

SNP GENOTYPE ANALYSIS AND IMPUTATION

DNA was extracted from cell pellets using QIAamp DNA Mini Kit (QIAGEN, 51306) following the manufacturer’s instructions.

DNA concentration was determined with SimpliNano spectrophotometer (GE Life Sciences), diluted to a final concentration of 10-

15 ng/mL and genotyped on UK Biobank AxiomTM Arrays at the Ramaciotti Centre for Genomics, Sydney, Australia. Samples previ-

ously screened using Illumina arrays, were re-genotyped on UK Biobank AxiomTM Arrays. Genotype data were exported into PLINK

data format using GenomeStudio PLINK Input Report Plug-in v2.1.4 and screened for SNP and individual call rates (<0.97), HWE

failure (p < 10�6), and MAF (<0.01).103 Samples with excess autosomal heterozygosity or with sex-mismatch were excluded. In addi-

tion, a genetic relationship matrix from all the autosomal SNPs were generated using the GCTA tool and one of any pair of individuals

with estimated relatedness larger than 0.125 were removed from the analysis.104 Individuals with non-European ancestry were

excluded outside of an ‘‘acceptable’’ box of +/� 6SD from the European mean in PC1 and PC2 in an SMARTPCA analysis. The

1000G Phase 3 population was used to define the axes, and the samples were projected onto those axes (Figure S4). Imputation

was performed on each autosomal chromosome using the Michigan Imputation Server with the Haplo-type Reference Consortium

panel (HRC r1.1 2016) and run using Minimac3 and Eagle v2.3 88,89. Only SNPs with INFO >0.8 were retained.

DEMULTIPLEXING OF CELL POOLS INTO INDIVIDUAL DONORS

demuxlet v1.0 91 and scrublet v0.20 92 were used to demultiplex cells from mixed-donor pools using transcriptome and genotype

data. Each pool was demultiplexed separately. demuxlet was run with exon-only SNPs and the following arguments: ‘‘–field GP,

–geno.error = 0.01, –min-mac 1, –min-callrate 0.5, alpha = 0.5, doublet-prior = 0.5’’. Cells were initially assigned a putative donor

based on the maximum likelihood of reads from scRNA-seq overlapping sets of unique variants (SNPs) mapped by genotyping.

scrublet was then used to confirm if a cell was a neotypic doublet by building a simulation of doublets based on sampled transcrip-

tome data and scoring the cell based on its neighbors in k-means nearest neighbor graph. A cell was designated a singlet if scrublet

agrees, and if the posterior probability of it being a singlet in demuxlet is greater than 0.99. Unassigned donors, doublets and cells

with ambiguous assignments were omitted from downstream analyses.

AGGREGATION, NORMALIZATION AND DIMENSIONALITY REDUCTION OF scRNA-SEQ DATASETS

The unfiltered count matrices of all batches were combined into one dataset using the cellranger aggr pipeline. This pipeline equal-

ized the read depth of all batches by downsampling reads from higher-depth libraries to match the lowest depth library.105 Cells that

had been removed from single-batch analyses due to low quality, being labeled as a doublet, or with conflicting assignments, were

also removed from the combined expression matrix. The SCTransform function from Seurat (v3.0.2) was applied to the filtered count

matrix to perform cell-cell and batch normalization.106 The fraction ofmitochondrial and ribosomal expression of total expressionwas

regressed out as a part of this step, and the top 3000 most variable genes were used to calculate residuals. The residuals were then

reduced to 30 principal components (PCs) using PC Analysis (PCA). These PCs were reduced further into two dimensions, for

visualization and clustering via Uni-form Mani-fold Approximation Projection (UMAP).96

IDENTIFICATION AND ANNOTATION OF CELL SUBPOPULATIONS

Graph-based clustering via the Louvain algorithm that was implemented in Seurat was used to identify cell subpopulations.107,108

First, cell-cell Euclidean distances calculated from PCs were projected onto a K-means nearest-neighbor graph (KNN). Next, the

Louvain algorithm was implemented at resolutions between 0 and 1, at 10 equal intervals of 0.1. Finally, the movement of cells

between subpopulations at these resolutions were visualized on to a clustree plot (Figure S2A) as implemented in the clustree
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R package.109 Regions of stability were identified from the plot, and the resolution where this region began - 0.4, was selected as the

optimal resolution. Cells were divided into 22 subpopulations at this resolution. Cells that could not be assigned to a subpopulation -

singletons, were assigned to a group designated ‘Cluster 0’. To annotate each subpopulation, the combined Likelihood Ratio Test

(LRT) as described by110 was applied to normalized, log-transformed UMI counts. Disease-specific markers within subpopulations

were identified using the Wilcoxon Rank Sum test.111 Genes were classified as markers if they were differentially expressed, based

on the thresholds of average log2 fold change > |0.25| and Bonferroni-corrected p value < 0.01. Annotation of retinal cell types was

performed using eye-field and retinal marker genes as described in Data S1.

IDENTIFICATION OF DIFFERENTIATION LINEAGES VIA PSEUDOTIME ANALYSIS

Differentiation lineages were identified using the slingshotR package.56 Singletons were excluded from the trajectory, and the UMAP

matrix was used as input for the ‘slingshot’ function. RPC1 was selected as the root of the trajectories due to the expression of the

proliferative marker MKI67, and the endpoints of trajectories were defined as the relatively mature cell subpopulations: RGC1, Pho-

toreceptors, Interneurons, RPE and Lens. A Kolmogorov-Smirnov test was used to test for significant differences in the distribution of

cells across pseudotime in RGC lineages 6, seven and 9. Pseudotime values for RGC3 were then averaged for use with cis-eQTL

analysis. Trajectory-specific differential expression analysis was performed with the tradeSeq R package 57, using the raw counts

of cells from RPC9, RGC1, RGC2 and RGC3. These cells were used to build a new lineage via slingshot, using RPC9 as the origin

and RGC1 as the endpoint. The counts and resulting slingshot object were then used to run evaluateK with the number of knots

ranging from 3 to 10. The optimal number of knots was determined to be 7. The fitGAM function was then run with this value, and

lineages defined as condition. The associationTest function was used to identify markers specific to each condition sub-lineage,

while the conditionTest function was used to identify markers that differed between the conditions.

IDENTIFICATION OF CIS-eQTL USING TRANSCRIPTOME AND GENOTYPE DATA

We investigated cis-eQTL associated with each subpopulation using the R package Matrix eQTL.112 To prepare scRNA-seq data for

this stage of analysis, the normalized, corrected UMI count matrix was split by subpopulation. The counts from cells for each indi-

vidual were aggregated by taking themean of each gene and used to build a gene-donor count matrix. Genes that were expressed in

less than 30% of the donor population were excluded, and remaining mean counts were log-transformed. These values were then

quantile normalised using the ‘normalizeBetweenArrays‘ function from the limma R package.97 SNPs with a Minor Allele Frequency

(MAF) of less than 10%were filtered from the genotype dataset. SNPs within one mega-base pairs of a gene were tested. To identify

lead eQTL based on disease, Matrix eQTL was run with an additive linear model using sex, age, disease status and the top six ge-

notype principal components as covariates. To identify eQTL that had alternative allelic effects under different disease statuses, we

included an interaction term (SNP:disease status) in the original linear model for each eQTL identified by the first round of analysis.

eQTL with interacting effects were determined to be significant based on a threshold of FDR <0.05 of the interaction term. The FDR

was calculated using the Benjamini–Hochberg procedure for all gene-SNP interactions that pass the p value threshold of 0.05, as

applied using MatrixEQTL.112

To identify eGenes with overlapping eQTL signals in more than one subpopulation, we performed multi-directional conditional

analysis on pairs of subpopulations. If a gene had an eQTL in subpopulation A and subpopulation B, we tested whether the allelic

effects of eSNPA and eSNPB were dependent on each other by including eSNPA as a fixed covariate in the linear model for subpop-

ulation B, and eSNPB in the linear model for subpopulation A. eSNPs were independent if the association remained significant. To

determine if eSNPs tag the same causal variant in both subpopulations or were in LD, we tested the change in allelic effect between

this model and the original model for significance. If the change was not significant, then the eSNPs tag independent causal variants

for the same gene in different cell subpopulations.

TRANSCRIPTOME WIDE ASSOCIATION STUDY ANALYSIS

Transcriptome-wide association study analysis (TWAS) was performed using summary statistics generated by eQTL analysis. We

customized our prediction models based on the online tutorial (available through https://github.com/hakyimlab/MetaXcan) to eval-

uate the association between predicted gene expression and glaucoma risk using GWAS summary statistics. The gene-expression

prediction models were constructed from the single-cell eQTL data using the following models: ‘‘blup’’, ‘‘lasso’’, ‘‘top1’’ and ‘‘enet’’.

The GWAS summary statistics from a recent multitrait meta-analysis of glaucoma were used.12 S-PrediXcan was used to harmonize

the GWAS summary statistics and to compute the gene-level association results using each subpopulation of single-cell expression

data and glaucoma GWAS summary statistics.86 A total of 3,573 genes (across tested subpopulations) were tested for glaucoma. To

correct for multiple testing, we adjusted the gene-level association p values using the Bonferroni correction method (0.05/(total num-

ber of tests across all subpopulations)). We then compared the transcriptome-wide association results based on scRNA-seq data to

bulk RNA-seq data. The bulk retinal transcriptome data were described previously.78 Briefly, 406 controls and age-related macular

degeneration cases that passed RNA-seq and genotyping quality control were modeled with mixed models, LASSO, or elastic net

according to Gusev et al85 The effect sizes from these models were used as weights to calculate the gene-trait associations.
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